Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456555

RESUMO

BACKGROUND: The potential of copper nanoparticles (Cu-NPs) to be used as an alternative control strategy against olive fruit flies (Bactrocera oleae) with reduced sensitivity to the pyrethroid deltamethrin and the impact of both nanosized and bulk copper hydroxide (Cu(OH)2 ) on the insect's reproductive and endosymbiotic parameters were investigated. RESULTS: The application of nanosized and bulk copper applied by feeding resulted in significant levels of adult mortality, comparable to or surpassing those achieved with deltamethrin at recommended doses. Combinations of Cu-NPs or copper oxide nanoparticles (CuO-NPs) with deltamethrin significantly enhanced the insecticide's efficacy against B. oleae adults. When combined with deltamethrin, Cu-NPs significantly reduced the mean total number of offspring compared with the control, and the number of stings, pupae, female and total number of offspring compared with the insecticide alone. Both bulk and nanosized copper negatively affected the abundance of the endosymbiotic bacterium Candidatus Erwinia dacicola which is crucial for the survival of B. oleae larvae. CONCLUSION: The Cu-NPs can aid the control of B. oleae both by reducing larval survival and by enhancing deltamethrin performance in terms of toxicity and reduced fecundity, providing an effective anti-resistance tool and minimizing the environmental footprint of synthetic pesticides by reducing the required doses for the control of the pest. © 2024 Society of Chemical Industry.

2.
J Environ Manage ; 353: 120178, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38310795

RESUMO

The treatment of oily wastewater has become a serious environmental challenge, for which graphene oxide has emerged as a promising material in solving the problem. The ever-growing utilization of graphene oxide (GO) in the treatment of oily wastewater necessitates a constant review. This review article employs a comprehensive literature survey methodology, systematically examining peer-reviewed articles, focusing on, but not entirely limited to, the last five years. Major databases such as EBSCOhost, Scopus, ScienceDirect, Web of Science and Google Scholar were searched using specific keywords related to GO and oily wastewater treatment. The inclusion criteria focused on studies that specifically address the application, efficiency, and mechanisms of GO in treating oily wastewater. The data extracted from these sources were then synthesized to highlight the most important developments, challenges, and prospects in this field. As far as oily wastewater treatment is concerned, the majority of the studies revolve around the use of GO in mitigating fouling in membrane processes, improving the stability, capacity and reusability of sorbents, and enhancing photodegradation by minimizing charge recombination.


Assuntos
Grafite , Purificação da Água , Águas Residuárias , Óleos , Purificação da Água/métodos
3.
Pest Manag Sci ; 78(10): 3953-3956, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35620887

RESUMO

Chemical control suffers from the loss of available conventional active ingredients due to strict environmental safety regulations which, combined with the loss of fungicide efficacy due to resistance development, constitute major problems of contemporary crop protection. Metal-containing nanoparticles (MNPs) appear to have all the credentials to be next-generation, eco-compatible fungicide alternatives and a valuable anti-resistance management tool. Could the introduction of MNPs as nano-fungicides be the answer to both reducing the environmental footprint of xenobiotics and dealing with fungicide resistance? The potential of MNPs to be utilized as nano-fungicides, both as alternatives to conventional fungicides or/and as partners in combating fungicide resistance, is discussed in terms of effectiveness, potential antimicrobial mechanisms as well as synergy profiles with conventional fungicides. However, their "golden" potential to be used both as alternatives and partners of conventional fungicides to combat resistance and reduce environmental pollution is challenged by undesirable effects towards non-target organisms such as phytotoxicity, toxicity to humans and environmental ecotoxicity, constituting risks that should be considered before their commercial introduction as nano-pesticides at a large scale. © 2022 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Nanopartículas Metálicas , Praguicidas , Proteção de Cultivos , Fungicidas Industriais/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Doenças das Plantas/prevenção & controle
4.
Sci Total Environ ; 829: 154638, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35314223

RESUMO

The antifungal potential of ZnO-NPs against Alternaria alternata isolates with reduced sensitivity to the succinate dehydrogenase inhibitor (SDHI) boscalid, resulting from target site modifications, was evaluated in vitro and in vivo. ZnO-NPs could effectively inhibit mycelial growth in a dose-dependent way in both boscalid (BOSC) sensitive (BOSC-S) and resistant (BOSC-R) isolates. The fungitoxic effect of ZnO-NPs against the pathogen was significantly enhanced when combined with boscalid compared to the individual treatments in all phenotype cases (BOSC-S/R) both in vitro and in vivo. Fungitoxic effect of ZnO-NPs could be, at least partly, attributed to zinc ion release as indicated by the positive correlation between sensitivities to the nanoparticles and their ionic counterpart ZnSO4 and the alleviation of the ZnO-NPs fungitoxic action in the presence of the strong chelating agent EDTA. The superior effectiveness of ZnO-NPs against A. alternata, compared to ZnSO4, could be due to nanoparticle properties interfering with cellular ion homeostasis mechanisms. The observed additive action of the oxidative phosphorylation-uncoupler fluazinam (FM) against all phenotypes indicates a possible role of ATP-dependent ion efflux mechanism in the mode of action of ZnO-NPs. A potential role of ROS production in the fungitoxic action of ZnO-NPs was evident by the additive/synergistic action of salicylhydroxamate (SHAM), which blocks the alternative oxidase antioxidant action. Mixture of ZnO-NPs and boscalid, resulting in a "capping" effect for the nanoparticles and significantly reducing their mean size, probably accounted for the synergistic effect of the mixture against both sensitive and resistant A. alternata isolates. Summarizing, results indicated that ZnO-NPs can be effectively used against A. alternata both alone or in combination with boscalid, providing an effective tool for combating SDHI-resistance and reducing the environmental fingerprint of synthetic fungicides.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Alternaria , Compostos de Bifenilo , Farmacorresistência Fúngica , Nanopartículas Metálicas/toxicidade , Niacinamida/análogos & derivados , Zinco/farmacologia , Óxido de Zinco/farmacologia
5.
Environ Sci Pollut Res Int ; 29(13): 19199-19211, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34709550

RESUMO

The increased mass production and application of engineered nanomaterials (ENMs) have resulted in the release of nanoparticles (NPs) in the environment, raising uncertainties regarding their environmental impacts. This study examines the effect of graphene oxide (GO) and titanium dioxide (TiO2) NPs on the inactivation of the three model bacteria originated by mammalians including humans: Escherichia (E.) coli, Enterococcus (E.) faecalis, and Staphylococcus (S.) aureus. A series of dynamic batch experiments were conducted at constant room temperature (22 °C) in order to examine the inactivation of co-existing bacteria by NPs, in the presence and absence of quartz sand. The inactivation experimental data were satisfactorily fitted with a pseudo-first order expression with a time dependent rate coefficient. The inactivation of E. coli and S. aureus was shown to increase in the co-presence of GO or TiO2 NPs and quartz sand comparing with the presence of GO or TiO2 NPs alone. For E. faecalis, no clear trend was observed. Moreover, quartz sand was shown to affect inactivation of bacteria by GO and TiO2 NPs. Among the bacteria examined, the highest inactivation rates were observed for S. aureus.


Assuntos
Nanopartículas , Quartzo , Escherichia coli , Grafite , Humanos , Areia , Staphylococcus aureus , Titânio
6.
Sci Total Environ ; 787: 147606, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33991907

RESUMO

The effect of copper (Cu-NPs, CuO-NPs), silver (Ag-NPs) and zinc oxide (ZnO-NPs) nanoparticles (NPs) on plant growth, physiological properties of tomato plants and their symbiotic relationships with the endophytic Fusarium solani FsK strain was investigated. Fungitoxicity tests revealed that the FsK strain was significantly more sensitive to Cu-NPs and ZnO-NPs than CuO-NPs and Ag-NPs both in terms of mycelial growth and spore germination. All NPs were more toxic to FsK compared to their bulk counterparts except for AgNO3, which was 8 to 9-fold more toxic than Ag-NPs. Apart from AgNO3, NPs and bulk counterparts did not affect the number of germinated tomato seeds even in higher concentrations, while root length was significantly reduced in a dose dependent way in most cases. Dry weight of tomato plants was also significantly reduced upon treatment with NPs and counterparts with most pronounced effects in the cases of AgNO3, Cu-NPs, ZnO-NPs, and ZnSO4. Root and shoot length of grown tomato plants was also affected by treatments while differences between NPs and bulk counterparts varied. A marked oxidative stress response was recorded in all cases of NPs/bulk counterparts as indicated by increased MDA and H2O2 levels of treated plants. Treated plants had significantly reduced chlorophyl-a and carotenoid levels compared to the untreated control. NPs and counterparts did not affect FsK colonization of roots indicating a possible shielding effect of tomato plants once the endophyte was established inside the roots. Vice versa, a possible alleviation of CuO-NPs, ZnO-NPs, and ZnSO4 toxicity was observed in the presence of FsK inside tomato roots in terms of plant dry weight. The results suggest that phytotoxicity of NPs in tomato treated plants should be considered before application and while both FsK and tomato are sensitive to NPs, their reciprocal benefits may extent to resistance towards these toxic agents.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Solanum lycopersicum , Óxido de Zinco , Cobre/toxicidade , Fusarium , Peróxido de Hidrogênio , Nanopartículas Metálicas/toxicidade , Raízes de Plantas , Simbiose , Óxido de Zinco/toxicidade
7.
Pestic Biochem Physiol ; 173: 104796, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33771267

RESUMO

Nano-fungicides are expected to play an important role in future plant disease management. Their unique properties include a broad antimicrobial action, increased effectiveness in lower doses, slower a.i. release and/or enhanced drug delivery and an ability to control drug-resistant pathogens, which makes them appealing candidates for use as eco-friendly antifungal alternatives to counter fungicides resistance. Copper nanoparticles (Cu-NPs) could suppress mycelial growth in both sensitive (BENS) and resistant (BEN-R) Monilinia fructicola isolates harboring the E198A benzimidazole resistance mutation, more effectively than copper oxide NPs (CuO-NPs) and Cu(OH)2. A significant synergy of Cu-NPs with thiophanate methyl (TM) was observed against BEN-S isolates both in vitro and when applied on plum fruit suggesting enhanced availability or nanoparticle induced transformation of TM to carbendazim. ATP-dependent metabolism is probably involved in the mode of fungitoxic action of Cu-NPs as indicated by the synergy observed between Cu-NPs and the oxidative phosphorylation-uncoupler fluazinam (FM). Copper ion release contributed in the toxic action of Cu-NPs against M. fructicola, as indicated by synergism experiments with ethylenediaminetetraacetic acid (EDTA), although the lack of correlation between nano and bulk/ionic copper forms indicate an additional nano-property mediated mechanism of fungitoxic action. Results suggested that Cu-NPs can be effectively used in future plant disease management as eco-friendly antifungal alternatives to counter fungicides resistance and reduce the environmental footprint of synthetic fungicides.


Assuntos
Cobre , Nanopartículas , Ascomicetos , Benzimidazóis/farmacologia , Cobre/toxicidade , Farmacorresistência Fúngica
8.
Sci Total Environ ; 747: 141287, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32791412

RESUMO

The potential of Ag-NPs to suppress Monilia fructicola isolates and to broaden the effectiveness of fungicides to overcome resistance was tested in vitro and in vivo. Twenty-three M. fructicola isolates were subjected to fungitoxicity screening with a number of fungicides in vitro, which resulted in the detection of 18 isolates resistant to benzimidazoles (BEN-R) thiophanare methyl (TM) and carbendazim (CARB). DNA sequencing revealed the E198A resistance mutation in the ß-tubulin gene, target site of the benzimidazole fungicides in all resistant isolates. Ag-NPs effectively suppressed mycelial growth in both sensitive (BENS) and resistant isolates. The combination of Ag-NPs with TM led to a significantly enhanced fungitoxic effect compared to the individual treatments regardless resistant phenotype (BEN-R/S) both in vitro and when applied on apple fruit. The above observed additive/synergistic action is probably associated with an enhanced Ag-NPs activity/availability as indicated by the positive correlation between Ag-NPs and TM + Ag-NPs treatments. No correlation was found between AgNO3 and Ag-NPs suggesting that difference(s) exist in the fungitoxic mechanism of action between nanoparticles and their ionic counterparts. Synergy observed between Ag-NPs and the oxidative phosphorylation-uncoupler fluazinam (FM) against both resistance phenotypes indicates a possible role of energy (ATP) metabolism in the mode of action of Ag-NPs. Additionally, the role of released silver ions on the fungitoxic action of Ag-NPs against M. fructicola was found to be limited because the combination with NaCl revealed a synergistic rather than the antagonistic effect that would be expected from silver ion binding with chlorine ions. The results of this study suggested that Ag-NPs can be effectively used against M. fructicola and when used in combination with conventional fungicides they could provide the means for countering benzimidazole resistance and at the same time reduce the environmental impact of synthetic fungicides by reducing doses needed for the control of the pathogen.


Assuntos
Ascomicetos , Fungicidas Industriais , Nanopartículas Metálicas , Farmacorresistência Fúngica , Fungicidas Industriais/toxicidade , Nanopartículas Metálicas/toxicidade , Prata/toxicidade
9.
Colloids Surf B Biointerfaces ; 189: 110841, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32059139

RESUMO

This study examines the effect of graphene oxide (GO) nanoparticles (NPs) on the transport (individual species) and cotransport (simultaneous transport) of three biocolloids (Escherichia (E.) coli, Enterococcus (E.) faecalis and Staphylococcus (S.) aureus) in water saturated porous media. Flowthrough experiments were performed in 30-cm long laboratory columns packed with quartz sand. All of the experiments were conducted at room temperature (22 °C), pH = 7, and ionic strength Is = 2 mM. The results from the cotransport experiments indicated that the mass recovery values for all biocolloids, calculated based on total biocolloid concentration in the effluent, were reduced in the presence of GO NPs. The strains E. coli and E. faecalis were shown to be more vulnerable to GO NPs than S. aureus. Temporal moments of the breakthrough concentrations suggested that the presence of GO NPs significantly influenced the fate and transport of the three biocolloids. Extended DLVO theory was used to quantify the various interaction energy profiles, based on electrokinetic and hydrodynamic measurements.


Assuntos
Enterococcus faecalis/química , Escherichia coli/química , Grafite/química , Nanopartículas/química , Staphylococcus aureus/química , Coloides/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
10.
Environ Technol ; 41(9): 1127-1138, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30198818

RESUMO

Graphene oxide (GO) nanomaterials are used extensively in a wide range of commercial applications. With GO production growing rapidly, it is expected that GO eventually could reach sensitive environmental systems, including subsurface formations, where montmorillonite, one of the most common minerals, is in abundance. This study examines the interaction of GO with quartz sand and montmorillonite (MMT) colloids at pH = 7, ionic strength IS = 2 mM, and 25°C, under dynamic conditions. Moreover, the effect of pH on MMT kinetic attachment onto quartz sand was investigated. The experimental data suggested that pH affected slightly the attachment of MMT colloids onto quartz sand. GO was attached in greater amounts onto MMT than quartz sand. Also, the attachment of GO onto quartz sand was shown to increase slightly in the presence of MMT colloids. However, when GO and MMT coexisted, the total GO mass attached onto quartz sand, suspended MMT, and attached MMT was increased. Furthermore, the equilibrium attachment experimental data were fitted nicely with a Freundlich isotherm, and the attachment kinetics were satisfactorily described with a pseudo-second-order model. Finally, the extended DLVO (XDLVO) theory was used to quantify the various interaction energy profiles based on electrokinetic and hydrodynamic measurements.


Assuntos
Nanopartículas , Quartzo , Bentonita , Coloides , Grafite , Concentração Osmolar , Areia , Dióxido de Silício
11.
Environ Technol ; 41(3): 277-286, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29969373

RESUMO

Jet fuel may be released in the environment either by in-flight fuel jettisoning (fuel dumping) or accidentally from spills and leaks, and eventually can reach subsurface formations where it can remain as long-term source of pollution. Remediation of aquifers contaminated by jet fuels is not a trivial task. This experimental study examined the effectiveness of a water-soluble, DNA-protein-based biodegradable non-living catalyst, with commercial name GreenZyme® for the remediation of water saturated porous media polluted with jet fuel (JP-5). Also for comparison purposes, the commercial surfactant sodium dodecyl sulfate (SDS) was used. Bench scale experiments were conducted in a glass column packed with glass beads. The migration of JP-5 in the glass column under various conditions, with and without the presence of GreenZyme® was monitored by a well-established photographic method. Digital photographs of the packed column were captured under fluorescent lighting. The fluorescent intensity of JP-5 dyed with Red Oil O within the column was analyzed using the Matlab Image Processing Toolbox. The colour intensities were converted to concentrations via appropriate calibration curves. The experimental results suggested that GreenZyme® was an efficient biosurfactant capable of enhancing significantly the migration of JP-5 in the glass column, which performed considerably better that SDS under the experimental conditions of this study.


Assuntos
Poluição Ambiental , Hidrocarbonetos , Porosidade , Dodecilsulfato de Sódio , Tensoativos , Água
12.
Sci Total Environ ; 705: 134858, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31838418

RESUMO

This study presents an estimation of the urine volume in the wastewater from a real, private clinic in Crete, Greece, during a seven-month period (01/06/2018 to 31/12/2018). Separate estimates were obtained for the volume of urine belonging to patients receiving antibiotics. It was found that the clinic disposed into the local municipal sewage network on the average 3,263 L/month of urine, from which 1,331 L/month (40.8%) belonged to patients receiving antibiotics. According to the pharmacy department of the private clinic, during the period of the study, the most frequently administered groups of antibiotics were on the average 779 g/month cephalosporins (68.1%), 108 g/month fluoroquinolones (9.5%) and others (11.2%), with various active substances including cefuroxime, ciprofloxacin, metronidazole and doxycycline. These active substances act like pollutants when disposed via the municipal sewer network into the environment.


Assuntos
Esgotos , Poluentes Químicos da Água , Antibacterianos , Fluoroquinolonas , Grécia , Humanos
13.
Sci Total Environ ; 703: 135557, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767318

RESUMO

Combating drug-resistance is a daunting task, especially due to the shortage of available drug alternatives with multisite modes of action. In this study, the potential of copper nanoparticles (Cu-NPs) to suppress 15 Botrytis cinerea isolates, which are sensitive or resistant to fungicides, alone or in combination with conventional fungicides, was tested in vitro and in vivo. Sensitivity screening in vitro revealed two fungicide resistance phenotypes, resulting from target site mutations. DNA sequencing revealed three B. cinerea isolates highly resistant to benzimidazoles (BEN-R), thiophanare methyl (TM), and carbendazim, bearing the E198A resistance mutation in the ß-tubulin gene, and four isolates highly resistant to the QoI pyraclostrobin (PYR-R) with a G143A mutation in the cytb gene. Cu-NPs were equally effective against sensitive and resistant isolates. An additive/synergistic effect was observed between Cu-NPs and TM in the case of BEN-S isolates both in vitro and when applied in apple fruit. A positive correlation was observed between TM and TM + Cu-NPs treatments, suggesting that an increased TM availability in the target site could be related with the observed additive/synergistic action. No correlation between Cu(OH)2 and Cu-NPs sensitivity was found, indicating that different mechanisms govern the fungitoxic activity between nano and bulk counterparts. A synergistic profile was observed between Cu-NPs and fluazinam (FM) - an oxidative phosphorylation inhibitor - in all isolates regardless of resistance phenotype, suggesting that ATP metabolism could be involved in the mode of action of Cu-NPs. Furthermore, the observed cross sensitivity and antagonistic action between Cu-NPs and NaCl also provided evidence for copper ions contribution to the fungitoxic action of Cu-NPs. The results suggested that Cu-NPs in combination with conventional fungicides can provide the means for an environmentally safe, sustainable resistance management strategy by reducing fungicide use and combating resistance against B. cinerea.


Assuntos
Botrytis/efeitos dos fármacos , Cobre/química , Farmacorresistência Fúngica/efeitos dos fármacos , Nanopartículas Metálicas/química , Benzimidazóis , Carbamatos , Nanopartículas Metálicas/toxicidade , Fenótipo , Doenças das Plantas
14.
Colloids Surf B Biointerfaces ; 180: 281-288, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31063885

RESUMO

Nanoparticles (NPs) are used in numerous applications and have been observed to accumulate in natural water bodies, including aquifers where they can interact with suspended colloids and viruses. This study examines the attachment of bacteriophage MS2 onto titanium dioxide (TiO2) anatase NPs using three different MS2 concentrations. Batch experiments, were conducted at room temperature to investigate the effect of ambient light and the presence of quartz sand on MS2 and TiO2 NPs heteroaggregation. Appropriate attachment isotherms were determined. Extended DLVO (XDLVO) theory was used to quantify the various interaction energy profiles. The results of batch experiments demonstrated that MS2 attachment onto TiO2 NPs was favored in the presence of sand under ambient light, while under dark conditions no clear trend was observed. Estimated XDLVO interaction energy profiles indicated that hydrophobic interactions may play a major role and influence the aggregation and heteroaggregation of MS2 and TiO2 NPs, as well as the simultaneous attachment of MS2 and TiO2 NPs onto quartz sand.


Assuntos
Levivirus/efeitos da radiação , Luz , Quartzo/química , Dióxido de Silício/química , Titânio/química , Cinética , Nanopartículas/química , Soluções , Temperatura , Ligação Viral , Água/química
15.
Sci Total Environ ; 670: 292-299, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30903901

RESUMO

Nano-fungicides are expected to play an important role in future plant disease management as eco-friendly alternatives of conventional synthetic fungicides. In the present study, the sensitivity of seven fungal species, known to cause foliar and soil-borne diseases, to nanoparticles (NPs) containing copper (Cu-NPs, CuO-NPs), silver (Ag-NPs) and zinc (ZnO-NPs) was assessed in vitro. Mycelial growth assays revealed that Cu-NPs with mean inhibition rates, EC50, ranging between 162 and 310 µg/mL were most effective among the NPs tested in inhibiting fungal growth, followed by ZnO-NPs with EC50 ranging between 235 and 848 µg/mL. All fungal species were practically insensitive to CuO-NPs and Ag-NPs except for B. cinerea, which was equally sensitive to Ag-NPs and Cu-NPs (EC50 = 307 µg/mL). Cu-NPs were more fungitoxic in terms of mycelial growth, to almost all species tested, than a protective fungicide containing Cu(OH)2, which was used as a reference. Fungitoxicity experiments with the NPs tested and bulk size reagents containing the respective metals revealed that ZnO-NPs were more toxic to all fungal species tested than ZnSO4, whereas Cu-NPs were more fungitoxic than CuSO4 in all cases, except for B. cinerea, A. alternata and M. fructicola. The existence of a positive correlation between Cu-NPs and CuO-NPs toxicity and, at the same time, the absence of any correlation between NPs tested and their respective bulk metal counterparts indicated potential differences in the mode of action between bulk and nanosized antifungal ingredients. Although there was considerable variation between fungal species, all NPs were generally 10 to 100 fold more fungitoxic to spores than hyphae and in the majority of cases more effective than Cu(OH)2, as revealed by colony formation bioassays. NPs significantly suppressed grey mold symptoms on plum fruit, especially Ag-NPs, which completely inhibited disease development. Consequently, tested NPs have the potential to be used as protective antifungal agents.


Assuntos
Fungicidas Industriais/toxicidade , Nanopartículas Metálicas/toxicidade , Controle de Pragas/métodos , Doenças das Plantas/microbiologia , Plantas/microbiologia , Cobre/toxicidade , Prata/toxicidade , Solo , Zinco/toxicidade
16.
Sci Total Environ ; 598: 160-167, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28441594

RESUMO

This study focuses on the effects of two clay colloids (kaolinite, KGa-1b and montmorillonite, STx-1b) and titanium dioxide (TiO2) nanoparticles (NPs) on human adenovirus transport and retention in water saturated porous media at three different pore water velocities (0.38, 0.74, and 1.21cm/min). Transport and cotransport experiments were performed in 30-cm long laboratory columns packed with clean glass beads with 2mm diameter. The experimental results suggested that the presence of KGa-1b, STx-1b and TiO2 NPs increased human adenovirus inactivation and attachment onto the solid matrix, due to the additional attachment sites available. Retention by the packed column was found to be highest (up to 99%) in the presence of TiO2 NPs at the highest pore water velocity, and lowest in the presence of KGa-1b. The experimental results suggested that adenoviruses would undergo substantial aggregation or heteroaggregation during cotransport. However, no distinct relationships between mass recoveries and water velocity could be established from the experimental cotransport data. Note that for the cotransport experiments, collision efficiency values were shown to be higher for the higher flow rate examined in this study.


Assuntos
Adenovírus Humanos , Silicatos de Alumínio , Coloides , Nanopartículas Metálicas , Titânio , Argila , Porosidade
17.
J Colloid Interface Sci ; 497: 117-125, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28282563

RESUMO

Virus inactivation by nanoparticles (NPs) is hypothesized to affect virus fate and transport in the subsurface. This study examines the interactions of viruses with titanium dioxide (TiO2) anatase NPs, which is a good disinfectant with unique physiochemical properties. The bacteriophage MS2 was used as a model virus. A series of batch experiments of MS2 inactivation by TiO2 NPs were conducted at room temperature (25°C), in the presence and absence of quartz sand, with and without ambient light. Three sets of experiments were performed in phosphate buffered saline solution (PBS) and one in distilled deionized water (ddH2O). The virus inactivation experimental data were satisfactorily fitted with a pseudo-first order expression with a time dependent rate coefficient. Quartz sand was shown to affect MS2 inactivation by TiO2 NPs both in the presence and absence of ambient light, because, under the experimental conditions of this study, the quartz sand offers a protection to the attached MS2 against inactivation. Moreover, it was shown that low TiO2 concentration (10mg/L) affected only slightly MS2 inactivation with and without ambient light. Furthermore, PBS hindered MS2 inactivation by TiO2 NPs.


Assuntos
Levivirus/efeitos dos fármacos , Levivirus/efeitos da radiação , Luz , Nanopartículas Metálicas/química , Quartzo/química , Titânio/química , Inativação de Vírus , Levivirus/fisiologia , Inativação de Vírus/efeitos dos fármacos , Inativação de Vírus/efeitos da radiação
19.
Sci Total Environ ; 579: 736-744, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27884530

RESUMO

Graphene oxide (GO) is a material with rapid production growth, and consequently GO nanoparticles are expected to eventually penetrate subsurface formations, where fine mineral particles are in abundance. This study examines the heteroaggregation of GO nanoparticles with kaolinite (KGa-1b) colloids under various conditions. Dynamic batch experiments were conducted in solutions with different pH values (pH=4, 7, and 10), different ionic strengths (IS=7, 12, and 27mM), and at three controlled temperatures (8, 14, and 25°C). The experimental results showed that a relatively small amount of GO nanoparticles (5-20% of the initial concentration) attached immediately onto KGa-1b colloids, and reached equilibrium in <20min. It was shown that neither temperature nor pH played a significant role in the attachment of GO nanoparticles onto KGa-1b colloids. In contrast, the attachment of GO nanoparticles onto KGa-1b colloids was shown to increase with increasing IS. Additionally, time-resolved dynamic light scattering (DLS) was used to identify the influence of IS on heteroaggregation between GO nanoparticles and KGa-1b colloids. The critical coagulation concentration (CCC) for the interaction between GO nanoparticles and KGa-1b colloids was 152mM (NaCl). The interaction energies were calculated, for all experimental conditions, by using measured zeta potentials and applying the classical DLVO theory. The equilibrium experimental data were fitted with a Freundlich isotherm, and the attachment kinetics were described very well with a pseudo-second-order model. Furthermore, thermodynamic analysis revealed that the attachment process was nonspontaneous and exothermic.

20.
Sci Total Environ ; 545-546: 210-8, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26747984

RESUMO

The cotransport of clay colloids and viruses in vertically oriented laboratory columns packed with glass beads was investigated. Bacteriophages MS2 and ΦX174 were used as model viruses, and kaolinite (ΚGa-1b) and montmorillonite (STx-1b) as model clay colloids. A steady flow rate of Q=1.5 mL/min was applied in both vertical up (VU) and vertical down (VD) flow directions. In the presence of KGa-1b, estimated mass recovery values for both viruses were higher for VD than VU flow direction, while in the presence of STx-1b the opposite was observed. However, for all cases examined, the produced mass of viruses attached onto suspended clay particles were higher for VD than VU flow direction, suggesting that the flow direction significantly influences virus attachment onto clays, as well as packed column retention of viruses attached onto suspended clays. KGa-1b hindered the transport of ΦX174 under VD flow, while STx-1b facilitated the transport of ΦX174 under both VU and VD flow directions. Moreover, KGa-1b and STx-1b facilitated the transport of MS2 in most of the cases examined except of the case where KGa-1b was present under VD flow. Also, the experimental data were used for the estimation of virus surface-coverages and virus surface concentrations generated by virus diffusion-limited attachment, as well as virus attachment due to sedimentation. Both sedimentation and diffusion limited virus attachment were higher for VD than VU flow, except the case of MS2 and STx-1b cotransport. The diffusion-limited attachment was higher for MS2 than ΦΧ174 for all cases examined.


Assuntos
Silicatos de Alumínio/química , Coloides/química , Modelos Químicos , Microbiologia da Água , Bacteriófago phi X 174/química , Bentonita/química , Argila , Gravitação , Caulim/química , Levivirus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...